深度学习模型往往不是由于依赖虚假特征来解决任务的依赖而不是分布的。反事实数据增强提供了一种(大约)实现伪造特征反事实的表示形式的一般方法,这是对分布(OOD)鲁棒性的要求。在这项工作中,我们表明,如果增强功能是由{\ em上下文估计机器}执行的,则反事实数据扩展可能无法实现所需的反事实不变性。我们从理论上分析了这种反事实数据增强所施加的不变性,并描述了一个示例性NLP任务,在这种情况下,通过上下文猜测机器的反事实数据增强并不会导致强大的OOD分类器。
translated by 谷歌翻译
这项工作提供了有关图消息传递神经网络(GMPNNS)(例如图形神经网络(GNNS))的第一个理论研究,以执行归纳性脱离分布(OOD)链接预测任务,在部署(测试)(测试))图大小比训练图大。我们首先证明了非反应界限,表明基于GMPNN获得的基于置换 - 等值的(结构)节点嵌入的链接预测变量可以随着测试图变大,可以收敛到随机猜测。然后,我们提出了一个理论上的GMPNN,该GMPNN输出结构性成对(2节点)嵌入,并证明非扰动边界表明,随着测试图的增长,这些嵌入量会收敛到连续函数的嵌入,以保留其预测链接的能力。随机图上的经验结果表明与我们的理论结果一致。
translated by 谷歌翻译
节点分类是关系学习中的一个核心任务,在两个密钥原理上具有当前最先进的静脉:(i)预测是节点邻居的排序的禁用 - 不变,并且(ii)预测是函数节点的$ r $ -hop邻域拓扑和属性,$ r \ geq 2 $。图形神经网络和集体推理方法(例如,信仰传播)依赖于最多$ r $-hops的信息。在这项工作中,我们研究了使用更强大的置换不变功能,有时可以避免对分类器的需求收集超过$ 1 $ -hop的信息。为此,我们介绍了一个新的架构,集旋转,概括了德·德斯集(Zaheer等,2017),一种简单而广泛使用的置换不变表示。设置捻线仪理论上提高了DeadSets的表现力,使其捕获更高阶依赖性,同时保持其简单性和低计算成本。经验上,我们看到了在若干任务中的Deplsets套装以及各种图形神经网络和集体推理方案的准确性改进,同时展示了其实现简单和计算效率。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译